An estimation of approximation for the solution of ordinary differential equations
نویسندگان
چکیده
منابع مشابه
A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملError Estimation for Collocation Solution of Linear Ordinary Differential Equations
This paper is concerned with error estimates for the numerical solution of linear ordinary differential equations by global or piecewise polynomial collocation which are based on consideration of the differential operator involved and related matrices and on the residual. It is shown that a significant advantage may be obtained by considering the form of the residual rather than just its norm.
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولMatlab : Numerical Solution of Ordinary Differential Equations
Matlab has facilities for the numerical solution of ordinary differential equations (ODEs) of any order. In this document we first consider the solution of a first order ODE. Higher order ODEs can be solved using the same methods, with the higher order equations first having to be reformulated as a system of first order equations. Techniques for solving the first order and second order equation...
متن کاملOn parallel solution of ordinary differential equations
In this paper the performance of a parallel iterated Runge-Kutta method is compared versus those of the serial fouth order Runge-Kutta and Dormand-Prince methods. It was found that, typically, the runtime for the parallel method is comparable to that of the serial versions, thought it uses considerably more computational resources. A new algorithm is proposed where full parallelization is used ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematica Moravica
سال: 2000
ISSN: 1450-5932,2560-5542
DOI: 10.5937/matmor0004021d